
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.6 JUNE 2009
1225

PAPER

A Solution of the All-Pairs Shortest Paths Problem on the Cell
Broadband Engine Processor

Kazuya MATSUMOTO†, Nonmember and Stanislav G. SEDUKHIN†a), Member

SUMMARY The All-Pairs Shortest Paths (APSP) problem is a graph
problem which can be solved by a three-nested loop program. The Cell
Broadband Engine (Cell/B.E.) is a heterogeneous multi-core processor that
offers the high single precision floating-point performance. In this paper, a
solution of the APSP problem on the Cell/B.E. is presented. To maximize
the performance of the Cell/B.E., a blocked algorithm for the APSP prob-
lem is used. The blocked algorithm enables reuse of data in registers and
utilizes the memory hierarchy. We also describe several optimization tech-
niques for effective implementation of the APSP problem on the Cell/B.E.
The Cell/B.E. achieves the performance of 8.45 Gflop/s for the APSP prob-
lem by using one SPE and 50.6 Gflop/s by using six SPEs.
key words: all-pairs shortest paths problem, Floyd-Warshall algorithm,
Cell/B.E. processor, performance evaluation

1. Introduction

The All-Pairs Shortest Paths (APSP) problem is to find
the minimum distance between any two nodes in a given
weighted graph. The problem is one of the most funda-
mental problems in graph theory. The applications of the
problem can be found in bioinformatics, network routing,
computer-aided design for integrated circuits, etc.

The APSP problem can be solved by using the Floyd-
Warshall (FW) algorithm with n3 (min,+) operations on n2

data where n is the number of nodes in a graph. However,
it is difficult to obtain high performance because the FW
algorithm has strict data dependencies. Therefore, several
attempts have been made previously to optimize the algo-
rithm. A blocked (tiled) FW algorithm has been developed
by G. Venkataraman et al. [21], and a recursive implemen-
tation was implemented by J.-S. Park et al. [13], [14], [17].
These blocked algorithms utilize memory hierarchy, exploit
the data locality, reduce the cache misses, and eventually
improve the performance.

Data vectorization can also be used to accelerate the
performance of the state-of-the-art processors with single
instruction multiple data (SIMD) units. S.-C. Han et al. [7]
reported that a four-way floating-point vectorized imple-
mentation of the blocked FW algorithm improved the per-
formance around 2.5–3 times on Athlon 64 and 5 times on
Pentium 4 over the non-SIMD blocked implementations.

The Cell Broadband Engine (Cell/B.E.) is a heteroge-

Manuscript received September 10, 2008.
Manuscript revised February 23, 2009.
†The authors are with the Graduate School of Computer Sci-

ence and Engineering, The University of Aizu, Aizuwakamatsu-
shi, 965–8580 Japan.

a) E-mail: sedukhin@u-aizu.ac.jp
DOI: 10.1587/transinf.E92.D.1225

neous multi-core processor consisting of a standard pro-
cessor, the Power Processor Element (PPE), and eight
short-vector SIMD processors, the Synergistic Processor
Elements (SPEs). The Cell/B.E. has outstanding single-
precision floating point computational performance [22],
[23]. The PPE can directly access the main memory with
load and store instructions while SPE can do this by using
DMA instructions. The SPE does not have a cache, but in-
stead, it has a private local store. The SPE can be considered
as a processor which has a 3-level of memory hierarchy (reg-
ister file, local store, main memory). Utilizing the memory
hierarchy and the SIMD units are important to exploit the
performance of the Cell/B.E.

This paper presents a solution of the APSP problem
on the Cell/B.E. in Sony PlayStation3. The implemented
blocked algorithm for the APSP problem is similar to the al-
gorithms in [5], [20]. The most computational intensive part
of the blocked algorithm is calculated by matrix multipli-
cation in a corresponding algebraic semiring. This feature
enables the program to utilize the power of Cell/B.E.

The rest of this paper is organized as follows. In Sect. 2,
the APSP problem is defined. In Sect. 3, the blocked APSP
algorithm is presented. In Sect. 4, more detailed description
of the Cell/B.E. is described and several optimization tech-
niques for effective implementation of the blocked APSP al-
gorithm are introduced. In Sect. 5, the performance is evalu-
ated and discussed. Finally, we draw the conclusion and the
future works in Sect. 6.

2. All-Pairs Shortest Paths Problem

Let G = (V, E,w) be a weighted graph with n nodes or ver-
tices v ∈ V = {1, · · · , n}, edges (i, j) ∈ E ⊆ V × V , and the
positive weight function w : E → R+, where w(i, j) means
the distance or weight of edge (i, j) and R+ is the set of posi-
tive numbers. Initially, the graph G is represented by an n×n
distance matrix D = [d(i, j)], where

d(i, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if i = j;
w(i, j) if i � j and (i, j) ∈ E;
∞ if i � j and (i, j) � E.

The shortest distance between any two vertices i and j is

d∗(i, j) = min
P∈paths(i, j)

∑
(u,v)∈E

w(u, v).

Then the problem to find an n × n matrix D∗ = [d∗(i, j)] is
called the all-pairs shortest paths problem.

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

1226
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.6 JUNE 2009

for k = 1 : n
for all i = 1 : n (i � k)

for all j = 1 : n (j � k)
d(k)(i, j) = min(d(k−1)(i, j), d(k−1)(i, k)+d(k−1)(k, j));

Fig. 1 Modified FW algorithm.

The Floyd-Warshall algorithm [3] can be used to solve
the APSP problem with a dynamic programming approach.
Let d(k)(i, j) be the distance of the shortest path from vertex
i to vertex j composed of the subset of vertices labeled 1 to
k. FW algorithm uses the following dynamic programming
recurrence:

d(k)(i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w(i, j) if k = 0;
min

(
d(k−1)(i, j),

d(k−1)(i, k) + d(k−1)(k, j)
)

if k ≥ 1.

FW algorithm computes the matrix D∗ = [d∗(i, j)] =
[d(n)(i, j)] as the final result.

Notice that because d(k)(k, k) = 0 for any k ∈ {0, 1, · · · ,
n} then for i = k:

d(k)(k, j)

= min
(
d(k−1)(k, j), d(k−1)(k, k) + d(k−1)(k, j)

)
≡ d(k−1)(k, j)

and for j = k:

d(k)(i, k)

= min
(
(d(k−1)(i, k), d(k−1)(i, k) + d(k−1)(k, k)

)
≡ d(k−1)(i, k).

Therefore, we can modify FW algorithm to exclude the un-
necessary operations in i = k and j = k cases. The modified
FW algorithm in a form of three-nested loop program is rep-
resented in Fig. 1. It can be easily shown that the total num-
ber of (min,+) operations in the modified FW algorithm is
reduced from n3 operations of a canonical FW algorithm [3]
to

S scalar
(min,+)(n) = n3 − 2n2 + n = n(n − 1)2. (1)

From Fig. 1, it is clear that the modified algorithm re-
quires 3n(n − 1)2 load operations and n(n − 1)2 store opera-
tions, so the total number of load/store operations is

S scalar
load/store(n) = 4n(n − 1)2. (2)

The FW algorithm has more strict data dependencies
than in the matrix-matrix multiplication case. These depen-
dencies should be resolved to update the entire n × n matrix
D(k) before moving on to the next (k + 1) iteration.

3. Blocked APSP Algorithm

The blocked algorithms are widely known as to be more ef-
ficient in many computing environments than the scalar al-
gorithms because block algorithms enable reuse of data in
registers and utilize the memory hierarchy. In this section, a

1 N = n/b;
2 for K = 1 : N do
3 % Black block update
4 D(K)

KK = (D(K−1)
KK)∗;

5 % Red blocks update
6 for all I = 1 : N (I � K)
7 D(K)

IK = min(D(K−1)
IK ,D(K−1)

IK + D(K)
KK);

8 % Blue blocks update
9 for all J = 1 : N (J � K)
10 D(K)

KJ = min(D(K−1)
KJ ,D(K)

KK + D(K−1)
KJ);

11 % White blocks update
12 for all I = 1 : N (I � K)
13 for all J = 1 : N (J � K)
14 D(K)

IJ = min(D(K−1)
IJ ,D(K)

IK + D(K)
KJ);

15 end
Fig. 2 Blocked APSP algorithm.

for i = 1 : b
for j = 1 : b

for k = 1 : b
DIK (i, j) = min(DIK (i, j),DIK (i, k)+DKK (k, j));

Fig. 3 Red block update.

for i = 1 : b
for j = 1 : b

for k = 1 : b
DKJ(i, j) = min(DKJ(i, j),DKK (i, k)+DKJ(k, j));

Fig. 4 Blue block update.

for i = 1 : b
for j = 1 : b

for k = 1 : b
DIJ(i, j) = min(DIJ(i, j),DIK (i, k)+DKJ(k, j));

Fig. 5 White block update.

blocked APSP algorithm is explained in details.
Figure 2 shows the blocked APSP algorithm. In this

algorithm the initial n × n matrix D is divided into N × N
matrix of blocks where N = n/b and b is the block size. For
simplicity, but without loss of generality, the matrix size is
assumed to be multiples of b.

On each K-th iteration (K = 1, 2, · · · ,N) the blocked
APSP algorithm solves, at first, the APSP problem for the
black block DKK (line 4 in Fig. 2) by applying the scalar al-
gorithm in Fig. 1 to the b×b subproblem, then updates N−1
red blocks DIK (line 7) and N − 1 blue blocks DKJ (line 10),
and, finally, updates (N − 1)2 white blocks (line 14). The
important fact is that all red, blue and white block updates
are the matrix-matrix multiply-add (like C = A⊗ B⊕C) op-
erations in the so called (min,+)-algebra (also known as the
tropical semiring [18]). This fact allows the program to use
all existing optimization techniques for matrix-matrix mul-
tiplication, like loop interchange, loop unrolling, software
pipelining, etc. The scalar programs of the red, blue, and
white block updates are shown in Figs. 3, 4, and 5, respec-
tively.

As can be seen from Fig. 2, the number of matrices
needed for each block update is different. The black block
update involves only one b × b matrix. The red/blue block

MATSUMOTO and SEDUKHIN: A SOLUTION OF THE ALL-PAIRS SHORTEST PATH PROBLEM ON THE CELL/B.E. PROCESSOR
1227

update needs two b×b matrices. The white block update re-
quires three b× b matrices. Thus, the black block update re-
quires b(b−1)2 scalar (min,+)-operations and 2b2 load/store
operations (b2 load and b2 store operations for each block).
The all red/blue block updates require b3(n/b − 1) (min,+)-
operations and 3b2 · (n/b − 1) load/store operations (2b2

load and b2 store operations for each block). The all white
block updates require b3(n/b − 1)2 (min,+)-operations and
4b2(n/b−1)2 load/store operations (3b2 load and b2 store op-
erations). Therefore, the total number of (min,+)-operations
is

S block
(min,+)(n, b) = n/b(b(b − 1)2 + 2b3(n/b − 1)

+ b3(n/b − 1)2)

= n(n2 − 2b + 1), (3)

and the total number of load/store operations is

S block
load/store(n, b) = n/b(2b2 + 2 · 3b2(n/b − 1)

+ 4b2(n/b − 1)2)

= 4n3/b − 2n2. (4)

Equations (3) and (4) show that increasing block size b, de-
creases the number of (min,+) operations as well as the
number of load/store operations. Notice that each (min,+)-
operation consists of two scalar operations: min and +.

Comparing Eqs. (1) and (3) shows that the blocked
APSP algorithm requires more (min,+)-operations than
scalar algorithm, and the number of such redundant oper-
ations is

Δ = S block
(min,+)(n, b) − S scalar

(min,+)(n) = 2n(n − b). (5)

These redundant operations are performed in the red and
blue block updates. On each iteration, the blocked algorithm
performs b3 (min,+)-operations, while the scalar algorithm
implements b3 − b2 operations.

The total number of block operations is

S block(n, b) = n/b
(
1 + 2(n/b − 1) + (n/b − 1)2

)
= (n/b)3.

On the other hand, the number of block matrix-matrix
“multiply-add” operations for red, blue, and white block up-
dates is

S RBW(n, b) = n/b
(
2(n/b − 1) + (n/b − 1)2

)
= (n/b)3 − n/b.

Therefore, the ratio

ρ =
S RBW

S block
× 100 % =

(
1 − 1

(n/b)2

)
× 100 % (6)

implies that, in case of a relatively large n/b, the blocked
APSP algorithm spends the most computing time to update
the red, blue, and white blocks (see Fig. 6).

Fig. 6 Ratio ρ = S BRW/S block in multiple of b.

Fig. 7 Structure of the Cell Broadband Engine.

4. APSP Implementation on the Cell/B.E.

4.1 PlayStation3 and Cell Broadband Engine

PlayStation3 (PS3) is a Sony game console equipped with
a 256 MB XDR DRAM as the main memory and a Cell
Broadband Engine (Cell/B.E.) as the processor at 3.2 GHz
clock speed. The Cell/B.E. is the first implementation of
a new multiprocessor family of the Cell Broadband En-
gine Architecture (CBEA) [8]. The CBEA was developed
jointly by the alliance of Sony, Toshiba, and IBM (STI). The
Cell/B.E. is a single-chip multiprocessor with nine heteroge-
neous processor elements that operate on a shared, coherent
memory. The Cell/B.E. consists of one Power Processor El-
ement (PPE), eight Synergistic Processor Elements (SPEs),
a Memory Interface Controller (MIC), a Cell Broadband
Engine Interface (BEI), and an Element Interconnect Bus
(EIB). The EIB consisting of four data rings connects all
other components. The structure of the Cell/B.E. is shown
in Fig. 7.

The PPE is a 64-bit general purpose RISC processor

1228
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.6 JUNE 2009

based on PowerPC architecture with vector/SIMD multime-
dia extensions. The PPE controls a Cell/B.E. system and
runs the operating system. The PPE mainly consists of two
units: the PowerPC Processor Unit (PPU) and the PowerPC
Processor Storage Subsystem (PPSS). The PPU is an in-
struction execution unit with a 32 kB level-1 (L1) instruction
cache and a 32 kB L1 data cache. The PPSS has a 512 kB
level-2 unified cache and deals with memory requests from
the PPU and external requests from SPEs or I/O devices.

The SPEs are 128-bit RISC processors with a dual-
issue pipelined four-way SIMD unit. Each SPE is mainly
composed of the Synergistic Processor Unit (SPU) and the
Memory Flow Controller (MFC). The SPE does not have
caches, but instead, has its 256 kB embedded local store
(LS). Each SPU fetches instructions from the LS, and it
loads and stores data between the LS and the register file
which has 128 registers with 128-bit wide. The SPU can
communicate with other processors through its DMA con-
troller (MFC). The single-precision floating point peak per-
formance of each SPE is 25.6 Gflop/s because each SPE can
compute eight single-precision floating point operations per
clock cycle with a four-way vector fused-multiply-add (fma)
instruction. Two of eight SPEs cannot be used on the PS3
Linux because one SPE is disabled to improve chip yields
and the other SPE is used by the PS3 OS.

4.2 Implementation Details

Several considerations are required to implement the
blocked APSP algorithm on the Cell/B.E. effectively. Here,
some details of the implementation are mentioned.

4.2.1 Block Size

The proper block size is important for utilizing blocked al-
gorithms. The block size is decided based on several factors
such as available memory size and data transfer speed. For
the implemented APSP program, the blocks with 64×64 el-
ements in a single precision are used. Several reasons exist
for the selection of this block size. For each 64 × 64 block,
16 kB memory space is needed. At the same time, 16 kB is
the maximum size of a single DMA transfer. In addition, if
block data layout is used (see below), a whole block of con-
tiguous data can be transferred by a single DMA transfer.
Notice that it is a common practice to use blocks of 64 × 64
elements for blocked algorithms in the Cell/B.E. [6], [12].

4.2.2 Data Layout

The initial matrix data are usually stored in the main mem-
ory in a row-major layout, where all row elements are stored
continuously. However, the blocked APSP algorithm deals
with the matrix data as matrix of blocks, so the implemen-
tation is required to process the data as matrix of blocks.

To transfer a block data between the main memory and
each LS of SPE, one possible way is to use DMA lists [9]
that the Cell/B.E. offers and that gather and scatter data of

Fig. 8 Converting row-major data layout to block data layout.

the other memory storage. DMA lists are as fast as DMA
transfers for contiguous data in principle, however, to trans-
fer a block data which is aligned in row-major layout, DMA
lists causes more TLB misses than DMA transfers. Thus,
for transferring the same amount of data, DMA list takes
more time than DMA transfer. The other possible way is
to change the data layout to block data layout (BDL) [15],
[16] before computing as it is depicted in Fig. 8. The BDL
matches the data access pattern for block data, and, as a re-
sult, the DMA data transfer for block data becomes more
efficient than using DMA lists.

4.2.3 Task Assignment

In the Cell/B.E. program, the black block update is done
in the PPE, and the red, blue, and white block updates are
implemented in the SPEs. This task assignment allows the
program to overlap processing with all available processor
elements except the first black block update.

4.2.4 Order of White Block Updates

The order of white block updates on each iteration affects
the performance. On K−th iteration, the next black block
update is for the (K + 1,K + 1) block, so the PPE has to wait
until SPE completes the white (K + 1,K + 1) block update.
Therefore, in the program, the (K + 1,K + 1) block is up-
dated firstly on each iteration. To accomplish this, the next
updating target block is determined dynamically instead of
appointing it in advance. This means that every SPE calls
the function to get the block index which is not updated,
then gets the block data pointed by the index from the main
memory, and updates the block.

Since the data address area which keeps the index is
shared with all SPEs, some mutual exclusion technique is
needed to synchronize the multiple accesses to this data
area. The atomic DMA updates are used in the program to
implement this mutual exclusion. The atomic DMA updates
ensures the mutual exclusion by managing the “reservation”
of the requested address area.

4.2.5 Matrix “multiply-add” in (min,+)-Algebra

The most compute intensive part of the Cell/B.E. program

MATSUMOTO and SEDUKHIN: A SOLUTION OF THE ALL-PAIRS SHORTEST PATH PROBLEM ON THE CELL/B.E. PROCESSOR
1229

is in non-black block updates. A fast matrix multiplication
(matmul) program [6] was modified so that it can be used
for these block updates of the APSP algorithm. The matmul
program is an assembly language implementation which is
very deeply tuned by several optimization techniques such
as loop unrolling, SIMDization, software pipelining, etc.
For single SPE, the matmul program achieves the sustained
performance of 25.40 Gflop/s, or 99.22% of the peak perfor-
mance. Thus, the modified program for the APSP problem
can be assumed to demonstrate a good performance.

The difference of the matmul program and the APSP
program is the type and the number of the needed instruc-
tions to obtain the desired result. In reality, the matmul pro-
gram is based on intensive usage of a fused multiply-add in-
struction (the assembly instruction fma [10], [11]); however,
the APSP program needs three instructions to implement a
single (min,+) operation: an add, a comparison, and a select
instruction (the assembly instructions fa, fcgt, and selb,
respectively). This means that ci j = ci j +

∑n
k=1 aikbk j for the

matmul program is changed into ci j = minn
k=1(ci j, aik + ak j)

for the APSP program. Moreover, the matmul program
needs only one SIMD instruction to compute four multiply-
add results, while for the APSP program, three SIMD in-
structions are needed, so the expected performance of the
APSP program would be at least three times less than that
of the matmul program.

4.2.6 Barrier Synchronization

To obtain a correct result in the APSP program, two barrier
synchronization points are needed. The first point is after
black block update (in Fig. 2, after line 4), and the second
point is before white block updates (before line 11). The
barrier synchronization is implemented by using a mailbox
mechanism [9]. The mailbox mechanism offers a 32-bit data
passing between PPE and SPEs. In both barrier synchro-
nization points, each SPE, which is used for computing,
sends a notification mail to the PPE, and after the PPE re-
ceives all the notification mails, the PPE sends an acknowl-
edgment mail to each SPE.

4.2.7 Multi-Buffering

As previously mentioned, some data transfers are required
to compute in each SPE. The transfer time is a bottle-
neck in the Cell/B.E. To decrease and hide the required
time, double- or multi-buffering techniques are utilized. In
the program, two buffers are reserved for the black block
update (double buffering), and three buffers for the red,
blue, and white block updates (triple buffering), respectively.
The triple buffering allows the Cell/B.E. program to overlap
loading data, computing, and storing data. For the black
block update, the storing data is unnecessary, so two buffers
are sufficient.

5. Performance Evaluation

The performance evaluation was made on PS3 with Fedora 7
Linux and Cell SDK 3.0. The gcc version 4.1.1 based com-
pilers (ppu-gcc and spu-gcc) were used for the program
compilation with the optimization options -O3 for the PPE
program and -Os for the SPE program. To evaluate perfor-
mance, the number in billions of (single precision) floating-
point operations per second (Gflop/s) is used. The Gflop/s
is calculated by using the following formula:

Gflop/s =
Num. of scalar operations

Execution time [sec]

=
2 · S block

(min,+)(n, b)

Exec. time [sec]
=

2n(n2 − 2b + 1)
Exec. time [sec]

.

Figure 9 shows the performance of the blocked APSP
algorithm, using PPE and one to six SPEs, when the initial
matrix data are aligned in block data layout. The experi-
ments were carried out for the problem sizes ranging from
n = 64 to n = 7360 in multiples of 64 (block size).

The maximum performance is 8.45 Gflop/s in the case
of using PPE and one SPE. The maximum aggregate per-
formance of using PPE and six SPEs is 50.6 Gflop/s, which
is 5.99 times faster than that of using PPE and one SPE.
The performance results show that every SPE achieves one-
third of the peak performance (25.6 Gflop/s) which is in full
agreement with our previous estimation.

The performance for the relatively small matrices on
any number of SPEs is not so different because the APSP
program spends most of the time in the black block up-
date on the PPE. On the other hand, when matrix size
is larger than 7104, the performance degrades drastically
due to a memory shortage that results in many page faults.
For the standard page size of 4 kB, the number of page
faults is increased from almost zero to many hundred thou-
sands when the matrix size exceeds 7104. The number
of page faults was checked by using the Linux command
/usr/bin/time.

The performance of the blocked APSP algorithm with
row-major data layout was also measured and the perfor-
mance deterioration compared with BDL was within 1% for

Fig. 9 Performance of the blocked APSP algorithm with BDL.

1230
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.6 JUNE 2009

Table 1 Implementation details.

Processor Architecture Algorithm Source

Cell/B.E. 3.2 GHz 9-core processor (PS3: PPE, 6 SPEs) blocked with BDL, multi-buffering [this paper]
4-way SIMDization

Cray XD1/FPGA 0.17 GHz APSP specific FPGA with 32 PEs blocked with BDL, n = 4096 [1]
Pentium 4 3.6 GHz processor blocked with BDL, 4-way SIMDization, [7]

automatic tuning
Athlon 64 2.4 GHz processor blocked with BDL, 4-way SIMDization, [7]

automatic tuning
Imagine 0.4 GHz programmable stream processor blocked with BDL [5]

with 48 parallel ALUs
VIRAM 0.2 GHz processor with 4 lanes Transitive closure of a directed graph [4]
Power3 0.375 GHz processor blocked with BDL [5]

Fig. 10 Performance comparison of the APSP algorithm.

almost all matrix sizes and the number of SPEs. This result
indicates that data layout does not strongly affect the per-
formance of the blocked APSP program on the Cell/B.E. of
PS3.

We have also discovered that, depending on the num-
ber of SPEs, multi-buffering improves the sustained perfor-
mance from 9% (one SPE) to 13% (six SPEs).

Figure 10 shows the performance comparison of the
APSP algorithm implemented on PS3 with other known im-
plementations on different computers: Cray XD1/FPGA,
Pentium 4, Athlon 64, Imagine, VIRAM, and Power3. The
architectural and algorithmic details of each implementa-
tion are summarized in Table 1. The Gop/s is used as the
unified performance unit instead of Gflop/s because perfor-
mance of some computers was measured for integer arith-
metic. Notice that the performance of 50.6 Gflop/s obtained
on the Cell/B.E. is impressive, achieving roughly 5.4, 9.6,
and 14.6 times faster than the Cray XD1/FPGA, Pentium 4,
Athlon 64, respectively.

6. Conclusions

This paper has described the blocked APSP algorithm and
its implementation on the Cell/B.E processor. It was shown
that the Cell/B.E. demonstrates extremely high performance
for the APSP problem. The sustained performance of
50.6 Gflop/s on the Cell/B.E. was achieved. To get even
more performance, a parallel computing using cluster of
PS3s is considered as future research.

In fact, the APSP problem is one of the instances of
the so called Algebraic Path Problem (APP) which unifies
a number of matrix and graph problems like matrix inver-
sion, APSP, transitive closure, minimum-cost spanning tree,
maximum capacity paths, etc. [2], [19], [20]. Thus, the de-
veloped APSP program can be used for the solution of these
problems with small modifications to satisfy different alge-
bras.

Acknowledgment

The authors would like to thank the anonymous reviewers
for their valuable comments and helpful suggestions which
have improved this paper.

References

[1] U. Bondhugula, A. Devulapalli, J. Fernando, P. Wyckoff, E.
Stahlberg, and P. Sadayappan, “Hardware/software integration for
FPGA-based all-pairs shortest-paths,” Proc. 14th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines,
pp.152–164, April 2006.

[2] E. Fink, “A survey of sequential and systolic algorithms for the alge-
braic path problem,” Tech. Rep., Department of Computer Science,
University of Waterloo, 1992.

[3] R.W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM, vol.5,
no.6, p.345, 1962.

[4] B.R. Gaeke, P. Husbands, X.S. Li, L. Oliker, K.A. Yelick, and R.
Biswas, “Memory-intensive benchmarks: IRAM vs. cache-based
machines,” Int’l Parallel and Distributed Processing Symposium,
pp.30–36, April 2002.

[5] G. Griem and L. Oliker, “Transitive closure on the imagine stream
processor,” Proc. Fifth Workshop on Media and Stream Processors
(MSP-5), 2003.

[6] D. Hackenberg, “Fast matrix multiplication on Cell (SMP) systems,”
Technische Universität Dresden; http://tu-dresden.de/
die tu dresden/zentrale einrichtungen/zih/forschung/
architektur und leistungsanalyse von hochleistungsrechnern/cell/
matmul/, Feb. 2008.

[7] S.-C. Han, F. Franchetti, and M. Püschel, “Program generation for
the all-pairs shortest path problem,” PACT ’06: Proc. 15th Interna-
tional Conference on Parallel Architectures and Compilation Tech-
niques, pp.222–232, ACM, New York, NY, USA, 2006.

[8] IBM, Cell Broadband Engine Architecture, Version 1.01, Oct. 2006.
[9] IBM, Cell Broadband Engine Programming Handbook, Version 1.1,

April 2007.
[10] IBM, SPU Assembly Language Specification, Version 1.6, Sept.

2007.
[11] IBM, SPU C/C++ Language Extensions, Version 2.5, Sept. 2007.

MATSUMOTO and SEDUKHIN: A SOLUTION OF THE ALL-PAIRS SHORTEST PATH PROBLEM ON THE CELL/B.E. PROCESSOR
1231

[12] J. Kurzak and J. Dongarra, “Implementation of mixed precision in
solving systems of linear equations on the cell processor,” Concur-
rency and Computation: Practice and Experience, vol.19, no.10,
pp.1371–1385, 2007.

[13] J.-S. Park, M. Penner, and V.K. Prasanna, “Optimizing graph algo-
rithms for improved cache performance,” IPDPS ’02: Proc. 16th In-
ternational Symposium on Parallel and Distributed Processing, IEEE
Computer Society, pp.32–41, Washington, DC, USA, 2002.

[14] J.-S. Park, M. Penner, and V.K. Prasanna, “Optimizing graph algo-
rithms for improved cache performance,” IEEE Trans. Parallel Dis-
trib. Syst., vol.15, no.9, pp.769–782, 2004.

[15] N. Park, B. Hong, and V.K. Prasanna, “Analysis of memory hierar-
chy performance of block data layout,” ICPP ’02: Proc. 2002 Inter-
national Conference on Parallel Processing (ICPP’02), IEEE Com-
puter Society, p.35, Washington, DC, USA, 2002.

[16] N. Park, B. Hong, and V.K. Prasanna, “Tiling, block data layout,
and memory hierarchy performance,” IEEE Trans. Parallel Distrib.
Syst., vol.14, no.7, pp.640–654, 2003.

[17] M. Penner and V.K. Prasanna, “Cache-friendly implementations of
transitive closure,” J. Experimental Algorithmics, vol.11, no.1.3,
2006.

[18] J.-E. Pin, Tropical Semirings, In Idempotency, Publ. of the Newton
Inst. 11, pp.50–69, Cambridge Univ. Press, 1998.

[19] G. Rote, “Path problems in graphs,” Computing Supplementum 7,
pp.155–198, Springer, 1990.

[20] A. Takahashi and S.G. Sedukhin, “Parallel blocked algorithm for
solving the algebraic path problem on a matrix processor,” LNCS,
vol.3726, pp.786–795, 2005.

[21] G. Venkataraman, S. Sahni, and S. Mukhopadhyaya, “A blocked all-
pairs shortest-paths algorithm,” J. Experimental Algorithmics, vol.8,
no.2.2, 2003.

[22] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K.
Yelick, “The potential of the Cell processor for scientific comput-
ing,” CF ’06: Proc. 3rd Conference on Computing Frontiers, pp.9–
20, ACM, New York, NY, USA, 2006.

[23] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K.
Yelick, “Scientific computing kernels on the Cell processor,” Int. J.
Parallel Program., vol.35, no.3, pp.263–298, 2007.

Kazuya Matsumoto received Bachelor de-
gree in Computer Science and Engineering from
the University of Aizu, Japan in 2008. Cur-
rently, he is a master student at the University
of Aizu. His current research interests include
parallel and distributed computing, program op-
timization and tuning, design and evaluation of
parallel algorithms.

Stanislav G. Sedukhin is a professor
and head of the Computer Engineering Divi-
sion at the University of Aizu. He received his
Ph.D. in Computer Science and Dr.Sci. (Physics
and Mathematics) from the Russian Academy
of Sciences in 1982 and 1993, respectively.
His research interests are in parallel and dis-
tributed computing, architectural synthesis of
VLSI-oriented processors, and design of highly-
parallel algorithms and application-specific ar-
ray processors. Dr. Sedukhin is a member of

ACM, IEEE Computer Society.

